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1 Introduction
In this project we have been experimenting with the diffusion models used in image compression,
restoration and generation. Our main objective was training the model to find an optimal way of
compressing an image and then learning how to return it to form as close as possible to the original
one in a given number of steps.
The problem of image compression can be defined as the task of reducing the amount of data required
to represent an image, while minimizing the loss of visual quality. This is achieved by removing
redundant or irrelevant information from the image data, without compromising the essential details
or features that make the image recognizable.
Image compression, reconstruction and generation using the diffusion models is motivated by the
diffusion in physics and is based on the idea of simulating a diffusion that spreads information across
the image. In diffusion-based compression algorithms, the image is represented as a set of pixel values,
which are modified over time using a set of diffusion equations. The resulting modified pixel values
are then used to reconstruct a compressed image that closely approximates the original image (to be
maximized).
The key challenge in diffusion-based compression is to design diffusion equations (ex. neural net
models) that effectively capture the important features of the image, while also achieving high com-
pression ratios. This requires a careful balance between the amount of diffusion applied to the image
data, and the preservation of important details and structures in the image. Another challenge in
diffusion-based compression is to optimize the compression performance for different types of images
and compression requirements. This includes considerations such as the image resolution, color depth,
and compression ratio, as well as factors such as computational efficiency, storage requirements, and
perceptual image quality.
Hence, the main problem of image compression using diffusion models involves designing and imple-
menting a diffusion-based compression algorithm that can effectively compress images while main-
taining a high level of image quality and fidelity.
More concretely we have been experimenting with the Lossy MNIST1, Lossy CIFAR2 and Lossless
model. For the lossy models we can assume that when compressing the input (ground truth) can be
corrupted (increasing compressive capabilities) as they can infer the semantic details and keep the
perceptual quality high. For the lossless model on the other hand, the input is compressed as is. The
results obtained are contained in Chapter 4.

1MNIST database is a database of handwritten digits that is used for training various image processing systems
2CIFAR-10 dataset is a collection of 60000 images used to train machine learning and computer vision algorithms
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2 Basics

2.1 What is diffusion model?
Simply put, diffusion models are generative models used for the generation of images (what we focused
on in our project), sound etc. In other words, diffusion models, as well as any other generative model,
are used for generating data similar to the one that they are trained on.
So, let us start from the beginning. Diffusion models are inspired by non-equilibrium thermodynamics
[4] that deals with physical systems which are not in thermodynamic equilibrium but can be de-
scribed in terms of macroscopic quantities. For instance, if we drop a tiny bit of blue paint (of the
approximately same density as water) in a glass of water, the whole system (paint and water) will
tend to its equilibrium that we can think of bluish water that has the same colour in all of its part.
However, starting from the initial stage when the paint is concentrated in one spot of glass at its
surface, it continues diffusing in water and eventually reaches (or at least gets closer to) equilibrium.
Moreover, due to the physical and chemical properties predicting the level of diffusion and behaviour
of paint is possible to describe. On the contrary, once equilibrium is reached or approached, reversing
the diffusion process is not possible, i.e. once paint is deluded enough in water it is not possible to
say and describe the diffusion process and tell where paint has been initially dropped. This process
motivates the idea of diffusion models in image synthesis. Namely, given an image we would like to
add some random noise to it in the form of kernels (which will be described later) which we can think
of as diffusion and then train a model to reverse the process and reconstruct the image. Then, once
a model is trained with a certain precision it will be able to generate completely new images and
reconstruct the unfamiliar one. We provide an illustration in the following figure.

As we can see in the example, noise is gradually added to the image and then removed. Note
that diffusion models consist of many more steps/ stages and that image quality is lost much more
gradually i.e. the process is much smoother. The noise-adding process can be modelled using the
Markov chains (a stochastic model that describes the sequences of possible events in which the
probability of each event depends only on the state attained in the previous event). Hence, given a
model in which noise is added gradually throughout n ∈ N steps, the colour of the pixel in jth time
step is determined purely based on the colour of pixels in (j − 1)th time step and no other. We will
come to this later and further explain possible ways of noise adding and removal process.
On the other hand, the reverse diffusion process takes as input the partially destroyed image (output
of the forward diffusion process) and learns how to predict the mean of the noise at each time step
noise of the image [3].

3



2.2 Why diffusion model?
Diffusion models play a substantial role in image (and sound) generation and reconstitution. One of
the implementations of diffusion models that most of us have tried at least once is the text-to-image
generation (mostly used is DALL-E-2 model), but there are many more of them [1]. Furthermore,
image synthesis based on the provided information is of great importance when it is not possible to
obtain an image in a standard way, as for instance in the imaging of complex molecules. Besides, this
widespread use in anomaly detection, medical image reconstruction, and waveform signal processing
show the significance and presence of diffusion models in science.
In addition to these applications, diffusion models find relevance in various other domains. Alongside
image generation, they are employed in image reconstitution after compression for more cost-effective
sharing and storage. This aspect becomes particularly appealing to the wider population as it allows
for efficient sharing of images without sacrificing quality. Similarly, these models can also be em-
ployed in the reconstruction of images (and sound) from crime scenes and surveillance cameras. By
utilizing the available data and applying diffusion models, investigators can enhance and restore valu-
able information from these visual and auditory records, aiding in criminal investigations and overall
security.
The potential applications of diffusion models extend beyond the realms of image and sound genera-
tion. These models can also be applied in fields such as natural language processing, where they can
assist in generating coherent and contextually relevant text based on given prompts. Additionally,
diffusion models have shown promise in areas like data augmentation, where they can be used to
generate synthetic data to augment training sets and improve the performance of machine learning
algorithms.
Overall, the versatility and effectiveness of diffusion models make them a valuable tool in various
domains. Their ability to generate, reconstruct, and augment data has significant implications for
image synthesis, anomaly detection, medical imaging, crime investigation, and many other scientific
and technological applications.
Exploring code implementations and enhancing the model architecture for specific purposes, such as
image compression, is a pivotal area of current research and also focus of this project.
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3 Models
As one can imagine, diffusion models are heavily reliant on stochastics, probability theory and math
in general. Hence, in order to explain the model, let us firstly introduce some notation. When we
talk about the n × m pixel image at any stage of diffusion process, we refer to its encoding of colour
of each pixel as an n · m dimensional vector. We use the following notation

• x0 initial (input) image
• xn image encoding in nth time step, where n ∈ {1, 2, ..T}

• q(xt | xt−1) is function (probability distribution) that takes image at time step t−1 and returns
image at next time step t (related to forward process)

• p(xt−1 | xt) is function (probability distribution) that takes image at times step t and returns
the mostly likely encoding of the image at time step t − 1 (related to reverse process)

• I identity matrix

3.1 Variational diffusion model (VDM)
The variational diffusion model is the most standard one and the easiest to understand. Understanding
the idea behind this model can be a good starting point for understanding other models and as so
we start with it.
As we have already mentioned, given a collection of images (data), the first thing to be defined is
the so-called forward diffusion process. During this process, Gaussian noise is gradually added to the
input image x0 step by step producing the sequence of image encoding x0, ...xT . The number of
steps T ∈ N needs to be predetermined and should be large enough so that training of the backward
process is beneficial but not too large since for T → ∞ we will obtain the complete noise (image
whose colour of each pixel can be assumed to be chosen at random). In other words, given an image
encoding xi for i ∈ {0, 1, 2...T − 1} we obtain xi+1 by changing the colour of each pixel (each entry
in vector xi) based on Gaussian distribution

q(xt | xt+1) ∼ N (
√

1 − βtxt, βtI) βt ∈ [0, 1] (1)

where βt ∈ [0, 1] so that variance of the normal distribution is bounded (colour of any pixel does
not vary to much from one to the next time step) and so that buildup of this drastic changes is
avoided. Notice, that for reach time step we apply the Gaussian with different (potentially) variance.
According to [3] this leads to more stable model, since it can be chosen such that the variance is
slowly decreasing and that way that adding noise in later time steps is less prominent. The intuitive
way to think about the issue with the constant variance, is that linear noise adding significantly speeds
up increasing the loss of information needed for proper training of the model [5]. The effect can be
also understood from the following example.

Figure 1: First line:linear noise adding, Second line: cosine noise adding
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Now in order to find the closed formula for xi we note that eq.(1) can be equivalently written as
xi+1 =

√
1 − βtxi + βtN (0, 1). That is, to avoiding applying the same formula k times and obtain

xk we can do the following. Let αt = 1 − βt and let αt =
∏t

k=1 αk, then one rewrites eq.(1) as

q(xt | xt+1) =
√

1 − βtxt +
√

βt · N (0, I)
=

√
αtxt +

√
1 − αt · N (0, I)

=
√

αt(
√

αt−1xt−1 +
√

1 − αt−1 · N (0, I)) +
√

1 − αt · N (0, I)
= √

αtαt−1xt−1 +
√

1 − αtαt−1 · N (0, I)

Where we used the property of normal distribution N (µ1, σ2
1) + N (µ2, σ2

2) = N (µ1 + µ2, σ2
1 + σ2

2).
Hence, continuing this way, we obtain the following closed formula for xt

q(xt | x0) = √
αtαt−1...α0xt−1 +

√
1 − αtαt−1...α0 · N (0, I)

=
√

αtx0 +
√

1 − αt · N (0, I)

Similarly can can define the reverse diffusion process function p(xt | xT ). We write

p(xt−1 | xt) = N (µθ(xt, t), Σθ(xt, t))

where µθ and Σθ are the neural networks that parameterise the Gaussian distribution and θ is the set
of parameters (mean and variance) that is to be found.
Now, to find the function that predicts the output noise in image between two times steps we
need some additional machinery. We define the loss function to be − log(pθ(x0)) (negative log-
likelihood, defined as a sum over the log-probabilities of the observed data points, where pθ(x0) is
the probability of a particular input) which is often used as the measurement of a loss for machine
learning models, telling us how bad it’s performing (the lower values of negative log-likelihood3 imply
the higher likelihood4). Now, notice that pθ(x0) depends on all of the element of the finite sequence
x0, x1, ...xT so finding the value of x0 for which pθ reaches the minimum would require knowledge
about the whole sequence and is not possible in practice [2].
To solve this problem, we introduce the concept of KL (Kullback-Leibler) divergence that is a measure
of the difference between two probability distributions. In particular, KL divergence measures the
amount of information lost when approximating one distribution with another. It is defined as the
expected difference between the logarithms of the two distributions, weighted by the probability of
each outcome:

DKL(q(xi | x0) || pθ(xi | x0)) =
∑

i

q(xi | x0) log( q(xi | x0)
pθ(xi | x0) )

where as we have already defined q(xi | x0) is the true distribution, pθ(xi | x0) is its approximation
and i ∈ {1, 2, ...T}.
Now note, that DKL ≥ 0, which can be easily proven using the fact that − log(x) ≥ 1 − x for all
x > 0. In particular (using the simpler notation),∑

i

p(xi) log(p(xi)
q(xi)

) =
∑

i

−p(xi) log(q(xi)
p(xi)

) ≥
∑

i

p(xi)(1 − q(xi)
p(xi)

)

3Equivalently, higher values of log-likelihood
4Chance of some calculated parameters producing some known data (̸= probability).
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=
∑

i

p(xi) −
∑

i

q(xi)

≥ 1 −
∑

i

q(xi) ≥ 0

Furthermore, it is worth noticing that DKL = 0 if pθ is a perfect approximation of q (as log(1) = 0)
and DKL ≥ 0. Thus we obtain the following expression

− log(pθ(x0))) ≤ − log(pθ(x0))) + DKL

= − log(pθ(x0))) +
∑

i

q(xi | x0) log( q(xi | x0)
pθ(xi | x0) )

≤ − log(pθ(x0))) +
∑

i

log( q(xi | x0)
pθ(xi | x0) )

= − log(pθ(x0))) +
∑

i

log( q(xi | x0)
pθ(x0|xi)pθ(xi)

pθ(x0)

)

= − log(pθ(x0))) +
∑

i

log(q(xi | x0)
pθ(xi)
pθ(x0)

)

= − log(pθ(x0))) +
∑

i

(
log(pθ(x0)) + log(q(xi | x0)

pθ(xi)
)
)

=
∑

i

log(q(xi | x0)
pθ(xi)

)

However, using the conditioning we know that pθ(xi) = p(xT )
∏T

i=1 pθ(xi−1 | xi), while q(xi | x0) =∏T
i=1(xi | xi − 1). Thus, we can get even nicer expression for the upper bound on − log(pθ(x0)) as

follows using the log rules

− log(pθ(x0))) =
∑

i

log(q(xi | x0)
pθ(xi)

) =
∑

i

log(
∏T

i=1(xi | xi − 1)
p(xT )

∏T
i=1 pθ(xi−1 | xi)

)

= − log(p(x0)) +
T∑

i=1
log( q(xt | xi−1)

pθ(xt−1 | xt)
)

= − log(p(x0)) + log( q(x1 | x0)
pθ(x0 | x1) ) +

T∑
i=2

log( q(xt | xi−1)
pθ(xt−1 | xt)

)

Now, using the Bayes’ formula we can write q(xt | xi−1) as q(xi−1|xi)q(xi)
q(xi−1) . However, since variance

of all of the terms in q(xi−1|xi)q(xi)
q(xi−1) is to expected to be quite high [2][3] add an extra conditioning on

the input image x0 i.e. modify the expression to get the form q(xt | xi−1) = q(xi−1|xi,x0)q(xi|x0)
q(xi−1|x0) . To

understand why this is suitable choice of regulation and why it might lead to even better performance
of the algorithm, take an image at time stem i. Then, given an information about x0, we are more
certain about the image at time step i − 1 compared to the case we do not have this information (as
it can be seen in following example). Basically, especially in the case when i is close to T probability
of image at time step i − 1 being any vector xi−1 is really low and set of possible outputs xi−1 is
highly dispersed (i.e. variance is high). However, if initial image is provided probability distribution
pθ(xi − 1 | xi, x0) brings more information and variability in the likely outcomes decreases.
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Figure 2: Conditioning on x0 yields much more stable model

On the other, as one can imagine, conditioning can also be achieved through the use of prior informa-
tion about the image. This can take the form of statistical priors, such as assuming that the image
has a certain distribution, or geometric priors, such as assuming that the image contains specific
structures or features.
We leave the demonstration and results of our implementation for later and now briefly, summarize the
steps conducted by the training (learning) of a Variational diffusion model. The Variational Diffusion
Model (VDM) learns through a two-step process: training and inference:

• Training : During the training phase, the VDM learns the underlying dynamics of the system
using observed data. The training data consists of input variables and their corresponding out-
puts or targets, while VDM aims to capture the relationship between these variables and learn
the parameters of the model that best represent the data.
To achieve this, the VDM employs a combination of variational inference and optimization
techniques. Variational inference involves approximating complex probability (posterior) distri-
butions over the latent variables that govern the dynamical system with simpler distributions.
This is achieved by formulating an optimization problem that minimizes the difference between
the true data distribution and the estimated distribution (where we use KL divergence to mea-
sure the performance).
During training, the VDM adjusts its parameters iteratively by optimizing a chosen objective
function. This process involves computing gradients of the objective function with respect to
the model parameters and updating them using gradient-based optimization algorithms such as
stochastic gradient descent. The training data is typically presented to the model in batches,
and the parameters are updated after processing each batch. This iterative process continues
until the model converges or reaches a stopping criterion (imposed by us).

• Inference: Once the VDM is trained, it can be used for inference tasks, such as making predic-
tions or estimating unobserved variables. Inference involves using the trained model to compute
the posterior distribution over the latent variables given new input data. This is done by ap-
plying Bayes’ rule and leveraging the learned parameters of the model.
During inference, the VDM utilizes the trained variational approximation to estimate the pos-
terior distribution. This approximation enables efficient and scalable computation, allowing the
model to handle complex and high-dimensional data. The posterior distribution can then be
used to generate predictions, perform simulations, or analyze the system dynamics.
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It’s important to note that the VDM’s ability to learn and generalize depends on the quality and
representativeness of the training data. Sufficient and diverse training data help the model capture
the underlying patterns and dynamics of the system, enabling it to make accurate predictions and
inferences on unseen data.
In conclusion, the Variational Diffusion Model learns by iteratively optimizing its parameters using
variational inference and optimization techniques during the training phase. Once trained, it can
perform inference tasks by estimating posterior distributions, leveraging the learned parameters to
make predictions and analyze system behavior and even generate completely new images (voice).

3.2 Latent space diffusion model
The Latent Space Diffusion Model (LSDM) is a machine learning algorithm that models the evolution
of a set of observations over time, by learning a low-dimensional latent space representation of the
data, and modeling the dynamics of the latent variables over time. The basic idea behind the LSDM
is to assume that the observed data points are generated from a set of latent variables, which evolve
over time according to a diffusion process.
Latent space diffusion model is trained using a maximum likelihood estimation approach (which is
actually based on maximizing the log-likelihood, recall higher values the higher values imply a more
accurate model), where the goal is to find the set of parameters that maximize the likelihood of the
observed data, given the model. To optimize the likelihood function, the LSDM uses a stochastic
gradient descent approach, where the gradients are computed using a technique called the score
function estimator (also known as likelihood-ratio estimator). This technique allows the gradients to
be computed efficiently, even in the presence of high-dimensional latent variables.
Now, let us formulate LSDM using the following set equations. The diffusion process is modeled as

dZ(t) = µ(Z(t), t)dt + σ(Z(t), t)dW (t)

where Z(t) is the state of the latent variables at time t, µ(Z(t), t) is the drift term that describes
the time-varying mean of the process, σ(Z(t), t) is the diffusion term that describes the time-varying
variance of the process, dW (t) is Brownian motion (i.e. Wiener process), and dt is an infinitesimal
time step. We will not go in a lot of details with the Brownian W (t) motion here, as the only important
thing to be noted is that it is a real-valued continuous-time stochastic process that satisfies certain
set of properties. One and the most important is that increments dW (t) = W (t + dt) − W (t) are
normally distributed for any dt > 0.
Furthermore, we have the so called observation model :

X(t) = f(Z(t), t) + ε(t)

where X(t) is the observed data at time t, f(Z(t), t) is the observation function that maps the
latent variables to the observed data, and ε(t) is the observation noise. As already mentioned, LSDM
relies heavily on the likelihood function of the observed data X = {X(1), X(2), ..., X(T )} given the
parameters θ = {µ, σ, f, ε} and is given by:

L(X; θ) =
∏

[p(X(t)|Z(t), θ) · p(Z(t)|Z(t − 1), θ)]

where p(X(t)|Z(t), θ) is the conditional probability of observing X(t) given Z(t) and the parameters
θ, and p(Z(t)|Z(t−1), θ) is the conditional probability of the latent variables at time t given the latent
variables at time t−1 and the parameters θ. The product is taken over all time steps t = {1, 2, ..., T}.
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Then we defined the log-likelihood function as

log L(X; θ) =
T∑

t=1
[log p(X(t)|Z(t), θ) + log p(Z(t)|Z(t − 1), θ)]. (2)

The whole objective is finding the parameters θ = {µ, σ, f, ε} for which (2) attains maximum, which
can be done using numerical optimization techniques, such as gradient descent or the expectation-
maximization algorithm. Furthermore, the most common technique used for computing the gradient
of the log-likelihood function with respect to the parameters is the score function estimator. By
using the score function estimator, the diffusion model can efficiently estimate the gradients of the
objective function without requiring explicit calculations of the likelihood function or solving complex
differential equations.
In conclusion, by combining latent variables and diffusion processes, the LSDM captures the underlying
structure and dynamics, enabling accurate modeling, analysis, and generation. It also offers a few
benefits over the previously introduced Variational Diffusion Model.
Firstly, the incorporation of latent variables allows LSDM to capture the underlying structure and
dependencies in the data. This allows for a more compact, flexible and expressive representation
of the data, enabling better modeling and analysis (in VDM the ability to capture complex data
dynamics and relationships is on contrary very limited).
Secondly, LSDM excels in generating new samples from the learned latent space. By leveraging the
diffusion processes within the latent space, the LSDM can generate diverse and high-quality samples
that capture the underlying data distribution. This makes it particularly useful for tasks such as
data augmentation, synthesis, and simulation. The VDM, on the other hand, may face challenges in
generating new samples without an explicit latent space representation.
Lastly, LSDM shows big improvements in the anomaly detection. By learning the normal data
distribution in the latent space, the model can identify deviations or anomalies in the data by measuring
their distance from the learned distribution. This can be beneficial in various applications, such
as fraud detection, fault diagnosis, and outlier identification. The VDM, without a latent space
representation, may have limited capabilities in anomaly detection.

3.3 Score-based generative modeling through stochastic differential equa-
tions (SDE)

Now we turn to the score-based generative modeling based on the stochastic differential equations
(SDEs) which is a powerful method for modeling more complex distributions than Gaussian. The
score-based generative model has as an objective to learn a probability distribution over a set of
variables by specifying a set of differential equations that describe the evolution of the variables over
time. Let, us describe the most important aspects of this model as well as present the idea behind
’learning’. For this purposes we introduce the notion of the score function, which is in our case the
gradient of the log-likelihood of the data with respect to the data itself. The score function provides
information about how the data is changing and can be used to learn a generative model. The next
important ingredient for Score-based generative model are the the drift5 and diffusion functions. these
are the components of the SDEs that describe the evolution of the variables over time. The drift
function describes the deterministic evolution of the system, while the diffusion function describes
the random fluctuations in the system. Having these define, ’learning’ goes as follows:

1. Estimate the drift and diffusion functions: The drift and diffusion functions can be estimated
using the score function. This is done by using the score function to compute the gradient of

5One can think of it as a drift of any random process, for instance a stock price process
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the drift and diffusion functions with respect to the parameters of the model. The gradient can
then be used to update the parameters using an optimization algorithm.

2. Simulate the SDEs: Once the drift and diffusion functions have been estimated, they can be
used to simulate the SDEs. This involves solving the differential equations numerically to obtain
a sample from the probability distribution.

3. Train the model: The model can be trained by iteratively estimating the drift and diffusion
functions and simulating the SDEs to obtain samples from the probability distribution. The
samples can then be used to compute the log-likelihood of the data and update the parameters
of the model using an optimization algorithm.

The special thing about this model is that we model the diffusion process by a prescribed stochastic
differential equation (SDE) that does not depend on the data and has no trainable parameters.
forward SDE:

dx = f(x, t)dt + g(t)dW.

Then, by reversing the process, we can generate new samples (images). To do this, we need to reverse
the diffusion process. The SDE was chosen to have a corresponding reverse SDE in closed form [8]:

dx = [f(x, t)g2(t)∇x log pt(x)]dt + g(t)dW. (3)

Hence as it can be seen from eq.3 in order to compute the reverse SDE, the score function (that is
∇xpt(X)) needs to be estimated and for that purposed score-based model and Langevin dynamics
are used.
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4 Our models
We created 3 models during this research project for compressing and decompressing images with
different levels of attributes as well as restoring these images with different levels of quality. First
model that we created was based on MNIST dataset that is open-source database containing 60000
hand-written digits in training dataset [5]. When first model would be implement on only 1 black-
white color channel, then second model would be trained using Cifar-10 dataset that contains classified
images of dimensions 32 by 32 and these images have depth of 3, red, green and blue color scale.
With final model we want to aim for lossless compression using efficient state-of-the-art bits-back
coding algorithm [10]. Thus, it can be seen that in general our goal is to increase complexity of
models over the project. We chose to use MNIST and Cifar-10 datasets for image data as these
are easily accessible big datasets as well as there isn’t any license attached to these sources that we
should be aware of.

4.1 Convolutional Neural Network
All the models share the same task to compress and decompress images. This can be achieved with
Convolutional Neural Network (CNN) that is abbreviation of Artificial Neural Network (ANN) that
is better suited for image data type [11]. Neural networks in general are computational systems that
include interconnected computational nodes that learn the input and optimize output. In our case we
are interested in reaching score function as the output of this network based on images. Therefore,
multiple steps would be necessary to extract different features of input image. In our case we use
deep autoencoder for the main task of generating from original image data lower dimensional feature
vector z. It works by iteratively scaling down image.

4.2 Model for MNIST
Our first model was a simple VDM (which has been described above) alongside an encoder-decoder
architecture to compress MNIST digits and decompress them. We started by going through the
Variational diffusion models paper and implementing the theory described there alongside looking at
other open sourced attempts to apply it. An important part of our implementation was to preserve
the variance of the latent variables as they were diffused, as this was a integral part of the model
(part of guiding the denoising process [6]).
To be more precise, the MNIST dataset consists of handwritten digits in black and white (meaning
1 channel), in a 28x28 width, height dimension. As such our model’s encoder should take input
(B, 1, 28, 28) with B being the size of the image batch and output (B, Z) with Z being the latent
dimension, which in our case equals to 32. The latent variables are then diffused but with the
varianced preserved, using in this model a linear noise schedule (to keep it simple).
After the latent variables have undergone diffusion while preserving their variance, they are passed
through the score network for denoising purposes. The score network is responsible for estimating
the score, which represents the gradient of the log-density of the latent variables. By utilizing this
gradient information, the model can iteratively update the latent variables and guide the denoising
process effectively.
Once the latent variables have been denoised, they are fed into the decoder of our model. The
decoder takes the denoised latent variables as input and generates a reconstructed image. In our
implementation, the decoder maps the latent variables from the denoised space to the original data
space by employing a series of transposed convolutions, which upsample the latent representation.
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This process allows the decoder to generate a reconstructed image that closely resembles the original
input.
The output of the decoder is modeled as a Bernoulli distribution, representing the probability of
each pixel being activated or deactivated in the reconstructed image. This probabilistic formulation
enables the model to capture the uncertainty and variability present in the data. By sampling from
this distribution, we obtain a reconstructed image that takes into account the inherent stochastic
nature of the generative process.
Overall, our model combines the power of Variational Diffusion Models (VDM) and an encoder-
decoder architecture to compress and decompress MNIST digits. Through the diffusion process,
guided by the score network, the model effectively denoises the latent variables. Subsequently, the
decoder reconstructs the image by transforming the denoised latent representation into a Bernoulli
distribution, capturing the probabilistic nature of the data. This integrated approach enables our
model to generate high-quality reconstructed images while preserving the variability and uncertainty
inherent in the MNIST dataset. The loss of the whole model is modelled as explained in the "Varia-
tional diffusion model" section.
The results of the model were very satisfying, as we were able to do almost perfect reconstructions
with about 95% percent reduction in size (0.04bpp). The diffusion also worked well albeit for small
number of steps, meaning that when we used a lot of steps (max 1000) the results where bad, with
many decompression artifacts.

(a) 21 chosen examples from the 1000 steps of
diffusion during the reconstruction process of one
of the MNIST digits.

(b) Example of part of batch used for compression
and decompresison during testing. The original is
on the left, the reconstructed pictures are on the
right

Figure 3
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Figure 4: Loss graph during training of the linear-layer-based MNIST model.

4.3 CNN-based model for CIFAR-10
In order to improve the performance of the original linear layer-based model for the MNIST dataset, a
number of changes to the architecture were implemented. The linear layers were employed for several
reasons, particularly because of their computational efficiency and relatively good performance on
small single-channel (single-colour) images. Most models in the field of computer vision, on the other
hand, adopt an architecture based on convolutional neural networks. This is due to the fact that
with linear operations on flattened images, information about the relationships of pixels over several
columns or rows are lost. This can be prevented by using convolutional kernels instead of linear layers
of neurons. PyTorch, unfortunately, requires considerably more computational resources.
To implement a CNN-based architecture, the model’s encoder and decoder were first rewritten to
include ResNet blocks, each comprising of convolutional layers, batch normalization for faster and
more stable training, and max-pooling for downsampling in the encoder. The batch normalization
also helped to prevent the vanishing gradient and exploding gradient problems. The encoder was
implemented in such a way to enable several latent space dimensions, particularly a latent space of
total sizes 7X7 and 14X14. This way, enough space at the bottleneck is given for further processing
in the latent dimension by the ScoreNet.
The decoder had a symmetrical architecture, nearly identical to the encoder but with transpose
convolutional layers for upscaling. The decoder was adjusted to upscale from the 7X7 and 14X14
back to a 32X32 latent space.
ScoreNet was also rewritten using convolutional layers; otherwise, the decoder would have to work
with linear vectors which would prevent the implementation of convolutional layers. The architecture
of ScoreNet was first done using U-Net. U-Net based architectures have their own bottleneck. It later
turned out that the bottleneck caused by downsampling by the encoder and the U-Net bottleneck
led to too large a loss of information on such small pictures. The approach was therefore changed
and ScoreNet was rebuilt to keep the dimension constant during the entire propagation through the
latent space. For this purpose, the architecture of the middle block of ResNet 18 with attention was
implemented.
The loss functions and diffusion process structure based on the Variational Diffusion Models remained
unchanged from the mathematical point of view, but several adjustments and code rewrites were
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necessary. Unlike in the previous model with linear layers, additional operations on the 4-dimensional
tensors were necessary to ensure that all concatenations of conditioning and embedding would work
properly in PyTorch. Particularly during the first implementation, it turned out that some parts of
the model did not learn due to the fact that the gradients did not propagate through the entire
architecture during back-propagation. This was caused by the use of NumPy functions that discard
the gradient that is saved along with the PyTorch tensor. It was therefore necessary to rewrite all
functions that use NumPy and replace them with adequate PyTorch built-in operators. The correct
gradient propagation was checked by looking at weights and bias coefficients of all layers of each part
of the model.
Subsequently, the model was trained using the AdamW optimizer, while a grid of parameters was
tested to prevent overfitting and gradient explosion. Further, as was mentioned in the VDM pub-
lication, the model incorporated adaptive scheduling. So far, the models we deployed used linear
noise scheduling that simply increases in magnitude with increasing time steps during diffusion. It
was, however, shown that each dataset is specific in its features and linear scheduling might cause
underperformance. The ability of the model to also learn when to induce what intensity of noise helps
to learn to reconstruct certain features. For this purpose, it is necessary to implement a separate
neural network that learns the noise scheduling function alongside the main model training.
The final improvement was the change of distribution for mapping to the pixel space in the final stage
of the decoder. The original linear layer model used the Bernoulli distribution, which is typically used
in variational autoencoder models. The distribution was changed to normal distribution. Additionally,
the original model with linear layers included rounding in the decoder. This was used for the purpose
of fast convergence during the diffusion process because rounding pixel values meant converging to
a final shape with all pixels of the number of MNIST being bright. On the other hand, this led to
highly contrasted and often white pictures on the CIFAR-10 dataset that has 3 channels. It turned
out that discarding this function led to more natural-looking reconstructed photos.
These improvements and changes led to improved performance on the CIFAR-10 dataset as expected
(we achieved 4.5bpp trained on 10 epochs or up to about 50% reduction in size with a non-corrupted
input), but for a further quality improvement, much longer learning times would be needed.
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(a)

(b)

Figure 5: The model architecture in (a) and the training loss curve for CIFAR-10 (b).

Figure 6: Subset of images from CIFAR-10 and their reconstructed version after compression and
decompression using the model
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4.4 Bits back encoding ANS model
With previous models we could only estimate through approximating probabilities, the distribution
of data p(x). We created neural network to optimize score function ∇log p(xt) [12] of distribution
p(x). However, it would be much more preferred if we could somehow exactly encode this probability
that we used to diffuse data. We also need to take into account that sometimes lossy compression
is undesirable for a number of applications and some lossless implementation6 of our model can
potentially provide state-of-the-art results (if not practical).
We start with the initial message length that would contain compressed data x with probability px

that is −log p(x) [13], but as we need to express distribution px with some other distribution, then
we would again need to compress this into the bitstream, increasing the size of the bitstream [14]. As
mentioned earlier [look at section 3.1 of VAEs], we can express one distribution in terms of other. In
that case will rely on Evidence Lower Bound (ELBO), which helps to calculate p(x) knowing model
p(x, z) with posterior q(z|x) in the formula Eq(z|x)[log p(x,z)

q(z|x) ] [12]. If we, then appproximate p(z|x)
with distribution q(z|x), then we can find that

Eq(z|x)[−logp(x|z) − logp(z) + logq(z|x)] = Eq(z|x)[−logp(x, z) + logq(z|x)]
= Eq(z|x)[−logp((z|x)p(x)) + logq(z|x)]
= Eq(z|x)[−logp(z|x) − logp(x) + logq(z|x)]

= Eq(z|x)[−logp(x) + logq(z|x)
logp(z|x) ]

= Eq(z|x)[−logp(x)] + DKL(q(z|x)∥p(z|x))[14]

If we now move p(y) to the left, we get that

logp(x) = −Eq(z|x)[log
p(x, z)
q(z|x) ] + −Eq(z|x)[log

q(x, z)
p(z|x) ]

= −ELBO + DKL(q(z|x)∥p(z|x))[14]

Therefore, we can reduce the length of the message by decoding ELBO part from bits without
addressing KL part.
Bits-back algorithm works on bitstream and we have both sender and receiver side. Exact steps for
bits-back algorithm is that by given initial bitstream of Ninit bits, we decode z using qθ(z|x). Then
as we know latent variable z, then next by using z we can encode original data x with pθ(x|z) and
finally we would encode z to bitstream using p(z) [15]. This implies total bitstream of length

Ntot = Ninit + logqθ(z|x) − logpθ(x|z) − logp(z)[15]

Decoder would perform these steps in the reverse order. Relation to ELBO can be made as Ntot−Ninit

is equal to negative ELBO. This also means that in order for sender to successfully decode z it needs
6The below theory of BB-ANS is short version of the cited papers, as we focus more on the artificial intelligence

side of things and a bit less on lossless compression based on entropy coding.
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to have initial bitstream of

Ninit ≥ −logqθ(z|x)

In our case what makes bits-back model more complicated is that it needs to utilize hierarchical latent
variables zt that are generated at various timesteps of diffusion, see 3.1. Therefore in iterative order,
we decode from zt zt+1, encode zt from zt + 1 and finally for last layer L of latent variable model
we encode zL with p(zL). This all implies that for our implemented BB-ANS model required initial
bits is equal to:

NBB−ANS
init = −logqθ(z1:L|x) = −

L−1∑
i=0

logqθ(zi+1|zi)[15]

We know that a variational diffusion model with a discrete (and fixed) number of timesteps can act as
a hierarchical latent model [12] and as such, be used for the purposes of BB-ANS. Initially we simply
improved upon the CNN-based VDM model, turning into a model without an initial encoder/decoder
so that it operates on image space (which for BB-ANS lossless compression, is more than fine).
Instead we made major changes on the score net part of the model (which predicts the noise). We
used a deep ResNet module paired with an attention module to capture the intricacies of the input
images and thus, model the score function better.
We our hierarchical model done, it was now time to build the BB-ANS module of the lossless model.
This was modelled from available open sources and theory as well. The module used the latent
model’s prior and posterior probability functions to encode the picture (that we want to compress
and send) into a bitstream. As such the size of the bitstream is directly related to the efficacy of
the probability functions of the latent model. This means that the lossless model will have varying
results depending on the dataset which the latent submodel is trained on.
The results of the lossless compression model, integrating Bits back coding (BB-ANS) with a vari-
ational diffusion model (VDM), were highly promising. After training the model for 10 epochs on
the MNIST dataset, we achieved a compression rate of 1.411 bits per dimension (bpd). This re-
sult highlights the potential of our approach in significantly reducing the storage requirements for
images while ensuring faithful reconstruction. Further evaluation and comparison with existing state-
of-the-art compression algorithms would provide deeper insights into the model’s performance and
its potential for real-world applications. Of course though, the speed of the model is still an issue to
be used all over the world (in the internet). This would be an interesting future avenue of research.
The implementation of the BB-ANS module should also have been clearer in code so that its more
idiomatic of the inner workings.
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5 Individual parts

5.1 Isidora Stoajdinović
I am Isidora Stojadinovic, a third-year student of Applied Mathematics at Eindhoven University of
Technology. In this section of the appendix, I will describe my contribution to the team process and
team deliverables of our project.
I joined the group in November after the choice of topic and the general planning of the work to
be done were completed. During the first few weeks, I caught up with the work of the other group
members. Afterwards, I mainly focused on the theoretical part behind the generative (and in particular
diffusion) models. To better understand how kernels are used in image processing and generation, I
started by obtaining basic knowledge of image processing. Later on, I shifted my attention to diffusion
models and learnt a great deal about many probabilistic and stochastic approaches used in image
generation and reconstruction (decompression).
During my study of diffusion models, I have gained a deeper understanding of a powerful class of
machine learning models, and the theory behind them and understood various techniques used in
image generation. As a natural, follow-up to my studies, I have learnt many different topics and
applications of various mathematical techniques. The main and most interesting is the Score-based
generative model due to the fact that it relies on stochastic differential equations. By studying these
models, I have learnt about the Brownian motion and Ito Integration, which were of particular interest
due to their wide application out of the scope of Generative Models themselves.
Even though I did not participate in the development of the models, the work of other group members
and group meetings provided me with practical examples and a glimpse of how the implementation
of a few models might work. Furthermore, by trying to understand the issues that have been arising
in the implementation processes as well as keeping track of the results I have obtained an insight into
the practical part of the topic and got an idea of how theoretical ideas can be translated into the
product that is nowadays used by all of us.
When it comes to group work, I believe that work division enabled each member of the group to learn
about things that he is interested in, while not keeping the quality of the end deliverable at a really
high level. Additionally, in my opinion, and when I reflect on the group organization and efficacy
compared to the one that I had in my project group last year I notice a big improvement. Firstly,
the size of the group has been halved, which allowed for better communication. Secondly, with an
average of 8 − 10 hours invested on this project, I have learnt significantly more compared to the last
year. One of the reasons for this is the better organization inside the group, better organization of
the track, but most importantly also the motivational topic itself. Lastly, I believe that group did a
great job and that contribution of each member has led to the successful completion of this year’s
project.

5.2 Šimon Sukup
In this project, I primarily made contributions towards the implementation and improvement of the
Variational Diffusion Model (VDM) for image compression. Firstly, I developed the first working
autoencoder for the group to see the whole process of compression by a simple architecture in action
using a convolutional architecture. We consequently worked on the first implementation of the VDM
for the MNIST dataset. Here, I implemented one of the loss functions in the first VDM and also
worked on the debugging of the three losses. This was an essential component of the VDM, and I
reused the implemented autoencoder as the first and last sections of the VDM.
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Additionally, I rewrote the VDM’s encoder-decoder architecture to be linear, which turned out to be
necessary to prevent the long training time (at that time without the Google Colab accounts). I also
made considerable contributions towards the optimization of the model to see if it was presentable by
adjusting the depth, activation functions, optimizers, learning rate, and hyperparameters to achieve
the best possible results with the current architecture. I prepared materials such as the model structure
and photos of the input, output, and embedding for the midterm presentation, which were also reused
in this report.
I then worked on improvements of the model while other members of the team worked on the bits-back
coding algorithm implementation with the old model. Particularly, I worked on reading publications
and implementing the monotone neural network for the noise scheduling.
Further, I improved the model architecture for the CIFAR-10 dataset by making a new version of
our VDM and rewriting the whole model to work with convolutional layers. Initially in this phase, I
designed the model comparison of convolutional encoder and decoder, which themselves downsampled
and upsampled the images, and the ScoreNet in the latent space that comprised of a U-Net-based
reconstruction network. However, this approach was infeasible because of the double downsampling,
which resulted in high loss of information and vanishing gradient. To prevent this, I replaced the U-
Net-based ScoreNet with a ResNet-based ScoreNet without downsampling, which kept the dimensions
the same over all layers of the ScoreNet.
These steps took a considerable amount of time and effort because I had to check if gradients
propagate, if the loss functions work correctly, if all dimensions match (CNN engineering), if all
model sections’ weights update, and if the model does not suffer from gradient explosion or vanishing
gradient. I also worked on rewriting the model to propagate the gradient correctly in CUDA to be
able to train them faster in Google Colab. Finally, I tested, implemented, and acquired data on the
new improved model for the report and wrote the report section on this model version.
Throughout the project, I spent an average of 11-13 hours a week, including studying and reading the
literature, publications, and learning to code in PyTorch. I also participated in the Honors Academy
as a representative, gave feedback to the Honors council, helped with the meeting organization, and
took part in council meetings. In terms of the teamwork, I am sure that the team did a great
job discussing the steps, tackling all technical and organizational challenges, and preparing for the
presentations and meetings. Without the team and their insights into the model architecture and the
technical skills, the project would not have given such results.

5.3 Angelos-Ermis Mangos
During the course of this project, I first worked on compiling a file of research dedicated to diffu-
sion models and its potential applications in compression data (in particular, images). To begin,
I thoroughly researched variational diffusion models and latent diffusion models, reading academic
papers, existing literature, and cutting-edge techniques in the field. This research phase allowed me
to gain a deep understanding of the theoretical foundations and mathematical frameworks of these
models. I also focused deeply on understanding the framework we were going to use (torch) and
how to appropriately use it to build custom models, which took a significant amount of time to learn
correctly (that is because I looked into competing frameworks such as TensorFlow and jax).
Next, I translated my research into practical implementation by developing a lossy compression model
tailored specifically for the MNIST dataset. A key area of my focus was the score net, which plays
a crucial role in estimating the score function required for diffusion processes. I dedicated significant
effort to designing the architecture of the score net, selecting appropriate neural network structures
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(such as attention modules, resnet, etc), and optimizing its hyperparameters (slightly as this wasn’t
the focus of the project).
During weeks before the midterm presentations, I made significant contributions in debugging the
MNIST model code so that we finally have a working compression scheme to show and talk about at
the presentations. The bugs mainly stemmed from our then lack of understanding of the framework
used (pytorch) and the intricacies of the loss function we developed for the MNIST dataset (in
particular the diffusion loss part and how that should be calculated based on literature).
Furthermore, I delved into the mathematical formulation of the loss functions used in the model (and
understanding how to use them). I ensured that the encoder/decoder (latent diffusion models) and
score net outputs were configured correctly to align with these loss functions. By fine-tuning these
components, I aimed to minimize information loss while achieving significant compression ratios.
I also participated significantly in extending the lossy compression model by incorporating a lossless
version using Bits back coding (BB-ANS) and asymmetric numerical systems (ANS). This involved
integrating the BB-ANS method with a variational diffusion model (VDM) as a hierarchical latent
model (when it has discrete timesteps). To accomplish this, I conducted extensive research on the
BB-ANS method, its theoretical foundations, and its practical implementations found online, while
also exploring similar projects that utilized variational autoencoders (VAEs) and BB-ANS as its latent
model.
My initial focus was on understanding the BB-ANS method and its underlying principles. I gained
insights into the integration of BB-ANS with latent variable models and the potential benefits it offers
for lossless compression. This newfound knowledge was used to produce the VDM+BB-ANS lossless
compression model.
In total I spent an average of about 10-12 hours per week to work on the project. This includes
organizing with the team, having meetings to talk how to proceed with the project and also reflect
on what we want to do (splitting work, working on what we want to learn and also on our strengths).
In general, I think the project was very good for all of us and we produced some very interesting and
practical results (with the team contributing mostly fairly across the board).

5.4 Austin Roose
During this project I mainly was investigating relations between different models that we were devel-
oping in order to understand technically how we can gain performance for image compression with
neural networks. In terms of code, I didn’t unfortunately write any significant parts of code for the
final model, but I was working on testing if dimensions for encoding and decoding the image data are
correct for our autoencoder. For this I created unit tests that would check the dimensions of encoded
and decoded data at timestamps and assert these values to expected values. I also worked on some
sampling code that was required in our case to sample the data using our score network. In order
to fit generators that would sample values from specific distribution into our model seed needed to
be generated appropriately and different parameters set to specific values. For report work, I wrote
the introduction to models and datasets that we will use and mathematical formulation for bits-back
model.
As more valuable insight, I got familiar how powerful neural networks are for optimizing distributions
and losses in order to capture relations between different datapoints. This enables to combine many
mathematical formulas into neural networks to achieve processes such as diffusion, which can be used
in many different fields. I got better understanding of types of different neural networks such as
convolutioonal neural network and how forward process and back-propagation work. I learned how
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to structure these neural networks into specific entities using pytorch framework and how to connect
different units such as sampling and loss function code into coherent packages.
I definitely overestimated the amount of work needed to be contributed to this project and as our
models that we worked with were more mathematically complex, then I didn’t have enough time to
focus into the mathematical theory part to fully understand the concepts and so I couldn’t contribute
that much to the final result of the project. Mostly what knowledge I gained from this project is that
neural networks are very powerful for optimizing different distributions and combining neural networks
with encoder-decoder models can lead to insightful data. In average, I worked for the project around
4 hours per week.
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6 Appendices

6.1 Source code
The source code of the models can be found in this github link:
https://github.com/RubyBit/CDM
In the model directory you can find cdm.py and advanced_cdm.py which represent the building blocks
of our original 2 models (MNIST and Cifar10). The cdm.py file contains the original architecture
of the MNIST model while the advanced_cdm.py contain the model for Cifar10 (to use the models
you have to go look into the training notebooks as some more high level classes are defined there,
while also using components from the lossless model). In the lossless directory you can find the the
utils.py file containing the building blocks for the BB-ANS module (specific implementation details
can be found at [13]), lossless_cdm.py containing the model used as a hierarchical latent model and
compress.py, a file showcasing the compression.
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